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Figure 1: Our reconstruction pipeline. From left to right: (a) semantically labeled 3D point cloud; (b) reconstructed objects using category-
specific methods, including billboard trees, replaced common objects, and a building. The color-code on the building shows recognized
different building parts; (c) textured 3D models on a ground plane, and (d) an overview of an automatically reconstructed large-scale scene.

Abstract

We present a complete system to semantically decompose and re-
construct 3D models from point clouds. Different than previous
urban modeling approaches, our system is designed for residen-
tial scenes, which consist of mainly low-rise buildings that do not
exhibit the regularity and repetitiveness as high-rise buildings in
downtown areas. Our system first automatically labels the input
into distinctive categories using supervised learning techniques.
Based on the semantic labels, objects in different categories are
reconstructed with domain-specific knowledge. In particular, we
present a novel building modeling scheme that aims to decompose
and fit the building point cloud into basic blocks that are block-
wise symmetric and convex. This building representation and its
reconstruction algorithm are flexible, efficient, and robust to miss-
ing data. We demonstrate the effectiveness of our system on vari-
ous datasets and compare our building modeling scheme with other
state-of-the-art reconstruction algorithms to show its advantage in
terms of both quality and speed.

Keywords: residential scenes, hierarchical representation, decom-
position and reconstruction, symmetric blocks
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1 Introduction

3D reconstruction and modeling of urban environment, due to its
vast applications in many areas, have long been an active topic in
many research communities, from computer graphics, computer vi-

∗The first two authors contributed equally to this work.

sion, photogrammetry, to remote sensing. Based on the type of
input data (2D vs 3D), the reconstruction scale (single building vs.
block/city), and the output models (facade, 2.5D, or full 3D), many
algorithms and systems have been developed, enabling the produc-
tion of 3D models better and faster.

Even though much progress has been made, as pointed out by a re-
cent survey paper by Musialski et al. [2012], “automatic large-scale
reconstruction remains an open problem.” Existing methods either
use airborne LiDAR data to generate 2.5D models that lack street-
level details (e.g., [Poullis and You 2009a; Lafarge and Mallet 2011;
Zhou and Neumann 2012]) or use ground-level images or LiDAR
for street-side modeling only (e.g., [Xiao et al. 2009; Frahm et al.
2010]). While fusion of ground-and-airborne data can produce the
most complete model (e.g., [Frueh and Zakhor 2003]), the fidelity
of the model could be improved. In addition, the output models
from existing approaches are usually a set of polygons (sometimes
per building) with little semantic labeling. Editing models is diffi-
cult.

In this paper, we present a comprehensive system to reconstruct
detailed 3D models with semantic labels. Starting with LiDAR
data with registered color images, we first segment the unorganized
3D points into distinctive categories including houses, plants, street
lights, etc. Then for each category we develop unique solutions to
reconstruct its 3D model, taking advantage of the prior information
about this particular category. For example, common objects, such
as street lights, are replaced by similar 3D models found on the
Internet. Plants are modeled with billboard techniques, which are
known to be visually convincing. Special emphasis is put on the
reconstruction of houses. The typical properties of buildings, such
as piece-wise planar structures, convexity, and symmetry, are used
to develop an efficient reconstruction algorithm that can deal with
incomplete data. The outcome of our system is a set of visually
complete 3D models consisting of common static objects in an ur-
ban scene, including not only houses, but also plants, street lights,
mailboxes, etc. Each object has its own semantic labeling.

The primary target of our system is residential areas. Many of ex-
isting modeling approaches, in particular those generating models
with high details and rich textures, deal almost exclusively with
multiple-story or high-rise buildings (e.g. [Müller et al. 2006; Nan
et al. 2010]). These buildings are typically found in downtown and
highly populated urban areas. The structural details are repetitive
and regular, from which user-defined grammar rules can be used to
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regularize the reconstruction to generate clean output. This kind of
repetition is not available in residential areas. In addition, thanks
to popular modeling tools such as Google Sketchup, many of these
metropolitan areas already have 3D models. Admittedly, those low-
rise houses in suburban/residiental areas are less glamorous to work
with from a visualization standpoint, but they are equally important
from a simulation or city planning standpoint since they are liter-
ally everywhere. For these areas, automation is important because
of the large scale. Prior approaches to reconstruct these areas are
developed with aerial data [Dorninger and Pfeifer 2008; Lafarge
et al. 2010], which produce no details below roof. The system pre-
sented in this paper fills the void of automatic decomposition and
reconstruction of residential areas from ground-based data.

The major contribution of our paper lies in a novel modeling
scheme for low-rise/residential houses. A house is represented as
a hierarchical collection of structures at different scales and loca-
tions: planar primitives, patches and symmetric and convex blocks.
The task of reconstruction is to find a possible combination of pla-
nar primitives that best explains the input data. Results have shown
that this method is powerful to model a variety of houses, even in
the presence of significant missing data. In addition, it runs effi-
ciently. After segmentation, it only takes about 15 minutes to re-
construct all the houses shown in Figure 1, an average of less than
20 seconds per house.

2 Related Work

The problem of building modeling has received considerable atten-
tion in recent years, probably due to the ubiquitous digital cameras
and more availability of active 3D sensing devices, such as LiDAR
(Light Detection And Ranging) devices. Given the large body of
work in this broad topic, it is beyond the scope of this paper to
provide a comprehensive review. Interested readers are referred to
two recent survey papers by Vanegas et al. [2010] and Musialski et
al. [2012].

Image-Based One topic of emphasis is to reconstruct 3D buildings
from images or video sequences(e.g., [Werner and Zisserman 2002;
Akbarzadeh et al. 2006; Xiao et al. 2008]). One of these pioneer-
ing papers in this area is the Facade system [Debevec et al. 1996],
in which an operator interactively selects corresponding lines be-
tween images and building primitives (blocks etc.), and the system
automatically estimates the camera pose and refines the primitives
to fit the images. Nowadays, the typical approach is to use struc-
ture from motion (SfM) techniques to estimate the camera motion
as well as a set of sparse 3D points, followed by either user interac-
tion(e.g., [Sinha et al. 2008]) or dense stereo matching to generate
the final model(e.g., [Frahm et al. 2010]).

LiDAR-based Alternatively the input can be 3D point cloud from
LiDAR devices; the focus is usually to refine the scanned data and
create a more usable mesh or parametric model(e.g., [Frueh et al.
2005; Poullis and You 2009b]). This is also the main focus of
our paper. Recent papers in this category often take advantage
of the repetition and symmetric structures in buildings. Müller et
al. developed an automatic approach for facade reconstruction with
CGA shapes using ortho-rectified photos [Müller et al. 2006]. It
works well with highly regular, repetitive facades. Later the system
was extended to allow regular photos that have perspective distor-
tions [Van Gool et al. 2007]. Using 3D scan as input, the Smart-
Boxes technique focuses on high-rise buildings with many repet-
itive structural elements [Nan et al. 2010]. From a user-selected
structural element, the system automatically finds similar copies in
the input 3D point cloud. These repetitive elements are merged
and refined, leading to a better final model. Automatic detection of
symmetric or repetitive patterns has also been developed, in either

2D [Schaffalitzky and Zisserman 1999; Wu et al. 2010], 3D [Pauly
et al. 2008; Bokeloh et al. 2009], or the combination of both [Li
et al. 2011b]. They typically make a strong assumption about the
layout of the symmetric or repetitive patterns, usually on a recti-
linear grid, to optimize for facade processing. Similar assumptions
are also applied to interior reconstruction with great success [Xiao
and Furukawa 2012]. Given our emphasis on residential houses, we
do not make such an assumption. Li et al. [2011a] detects global
regularities among primitives to better fit to scanned data but they
cannot handle completely missing surface patches like the roof area
in our case. More recently, Vanegas et al. [2012] presents a system
to reconstruct Manhanttan-World Building masses from 3D range
scans. Assuming the building is made of axis-aligned boxes, it is
able to produce water-tight building models in the presence of sig-
nificant missing data. The main limitation is that it is unable to
handle slanted surfaces.

Large-Scale In the area of automatic reconstruction at a large scale,
approaches using ground-based data, either images (e.g., [Xiao
et al. 2009; Frahm et al. 2010; Irschara et al. 2012]) or 3D point
clouds [Frueh et al. 2005], usually focus only on the facade, or
whatever can be captured. On the other hand, approaches with air-
borne data generate 2.5D models since only the roof is captured
(e.g., [Dorninger and Pfeifer 2008; Poullis and You 2009a; Lafarge
et al. 2010; Lafarge and Mallet 2011; Zhou and Neumann 2011]. In
both scenarios, few assumptions are made about the scene, there-
fore, they are usually more robust about different building/scene
types. The downside is that the model is only good from the view-
point it is originally captured. In our targeted setup – houses of
a few of stories, we can capture parts of both, but neither is com-
plete. In order to complete the model, we make a few common
assumptions. These assumptions also allow us to provide seman-
tic labeling to the final model. As we will demonstrate later, our
approach is able to handle significant missing data, in particular in
the roof area. There are approaches that combine both ground and
aerial data sources (e.g. [Frueh and Zakhor 2003; Karantzalos and
Paragios 2010]) for large scale reconstruction, our approach can
also benefit from the more data coverage.

As pointed out by other researchers [Musialski et al. 2012], it is
difficult to directly compare these different reconstruction meth-
ods since they are all developed under different context with dif-
ferent emphasis. Nevertheless we have compared our results with
two state-of-the-art algorithms. The first uses piecewise-planar as-
sumption about the scene geometry [Chauve et al. 2010], which
is also the foundation for our house reconstruction scheme. The
second focuses on building 2.5D models for large scale reconstruc-
tion from aerial scans [Zhou and Neumann 2010]. Both methods
are automatic. The comparisons demonstrate the advantage of our
approach for the task of reconstruction of residential houses from
ground-based 3D point data.

3 Algorithm Insight and Overview

As we have discussed before we focus on automatic modeling of
stand-alone buildings, such as single-family houses in suburban ar-
eas. As shown in Figure 2, there are many different building styles.
Compared to high-rises in downtown, the symmetry and repetitive-
ness are less dominant. This is particularly true for recently built
houses with the “neo” style that combine different historic styles
with new features. Nevertheless, we can see that even though there
are many variations in building styles, the fundamental structures
are the same: a combination of convex blocks with tilted roofs. The
variations in styles are usually manifested in terms of construction
materials, level of decorations, layout of windows, and slopes of
roofs, etc. None of them changes the underlying structural seman-
tics of a building.
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Figure 2: Pictures of various building styles in chronical orders.
From left to right: (a) American Colonial styles between the 17
and 19th century; (b) Neoclassical style (early 19th century) that
reflects classic ideas of order and symmetry; (c) Victorian house
styles (late 19th century) with elaborated decorations; (d) Bunga-
low Styles in the early 20th century, compact, economical and in-
formal; (e) “Neo” house styles (recently built homes) that borrow
details with historic styles and combine them with modern features.

Given the large scale point clouds acquired in the outdoor scan, our
first step is to automatically segment and classify the input point
clouds into several classes (e.g., houses, street lights, mailboxes,
etc.) as described in Section 4. As our main focus is the residen-
tial buildings, the key to our modeling pipeline is to decompose
the input point cloud of a house scan into basic blocks using a few
pre-defined reconstruction constrains, namely, planarity, symmetry,
and convexity. This is described in detail in Section 5. With these
basic blocks in place, details such as columns, and eaves are fur-
ther extracted and processed. Next, the textures are added to the
reconstructed model (Section 6.1). The output of house reconstruc-
tion is a complete textured model composed of a hierarchical tree of
building structures with six semantic labels: walls, roofs, columns,
eaves, garage doors and chimneys. Finally, other objects (e.g., trees,
mailboxes, etc.) in the landscape can also be modeled (Section 6.2).

4 Semantic Segmentation

The first stage in our system is to segment the input point cloud
into semantically distinctive groups. This is done in two steps. The
first is to label the input into categories, such as houses or plants.
Then points labeled as houses are further refined into more detailed
structural classes, such as roofs or walls. We use supervised ma-
chine learning techniques to perform these tasks.

4.1 Categorization

We define the following categories in our current implementa-
tion: houses, plants, mailboxes, street lights, waste bins, cars and
ground, which are common objects seen in a residential area. From
our scanned data, we manually label a section as the training data
set and adopt the semantic segmentation approach similar to Zhang
et al. [2010]. It should be mentioned that other alternatives such
as [Golovinskiy et al. 2009] and [Xiao and Quan 2009] can also be
applied to perform this task.

In order to deal with our point cloud data, we have made a few
changes to the original method. First, we group nearby points into
superpoints, analogues to the superpixel concept in image segmen-
tation. Second, we use the Adaboost classifiers. Third, we intro-
duce a new concept called super-region to differentiate objects with
similar superpoint features but at different scales, such as houses
and waste bins. For each super-region, we compute the follow-
ing features: height, volume, area, planarity difference, and length.
These additional features are added to its superpoints. The aug-

mented feature vectors are used for training. After the classifica-
tion stage, the result is further grouped into connected components.
More technical details can be found in the supplementary material.

4.2 Segmentation of House Point Cloud

For each point set labeled as a house, it will be further segmented
into different classes, including columns, roofs and walls. The same
segmentation method in Section 4.1 is adopted with one additional
superpoint feature: surrounding emptiness, which measures the
number of points within a neighboring bounding box around each
superpoint center. This feature is mainly used to identify columns.

5 House Modeling

In this stage each labeled house (or building) from Section 4 is re-
constructed to a polygonal model based on a novel algorithm that
consists of several main procedures: a top-down decomposition, a
bottom-up grouping and reconstruction, and a refinement process.
For each building, the algorithm takes its segmented point cloud
as input, where each point is represented by (x, y, z, c) with the
first three components being its spatial coordinates and the last one
representing its class. The algorithm generates a hierarchical rep-
resentation of the building (described in Section 5.1) with refined
semantic labels (whose definition can be found in Section 5.3).

5.1 Building Representation

In our modeling algorithm, each potentially complicated building
structure is represented by a combination of simple blocks that con-
sist of various parameterized primitives. Even though there are
many variations in building styles, the basic blocks are quite sim-
ilar: each block is a spatially symmetric box that consists of two
or more spatially symmetric pairs of patches, where each patch is
a conjunction of a roof and its aligned vertical wall. Therefore, our
algorithm introduces a general, hierarchical-tree based representa-
tion for suburban buildings:

Building =
⋃
i

Blocki

Block =
⋃
j

Pairj of patches

Patch = {Roof ;Wall} or {∅;Column}.

Note that a patch allows at most one of its members (i.e., roof or
wall) to be empty set (∅). For instance, a box can be represented
as two pairs of patches with its roof being ∅; a gable can be repre-
sented as two pairs of patches where one of the roofs is ∅; a column
block can be represented as two pairs of patches with only column
primitives. Our block modeling algorithm aims at finding a plausi-
ble decomposition of a single building. See Figure 3 for illustration.

5.2 Reconstruction Constraints

In order to find a plausible decomposition automatically from unor-
ganized input points, we define three constraints based on common
building structures.

Planarity Constraint This is straightforward: each basic block
is essentially a set of planar primitives in which each plane (wall
or roof) Pi is determined by its orientation vector (normalized)
ni ∈ R3, position in R3 pi ∈ R3, and its boundary set Bi ⊂ R3,
namely, Pi = 〈ni, pi, Bi〉, where the boundary set Bi of Pi is the
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Figure 3: Hierarchy-tree representation of buildings.

intersection of Pi and the bounding box of all data points contained
in Pi. The planar primitives are extracted using a robust plane fit-
ting algorithm based on RANSAC [Schnabel et al. 2007].

Block-Level Symmetry Constraint As we discussed before, the
regularity of a single building is not as obvious as high-rise build-
ings. However, the symmetry of its basic blocks still holds. Thus,
any asymmetric structure can be further decomposed into multi-
ple symmetric blocks. In the decomposition procedure, therefore,
our approach requires each basic block of a building structure be
symmetric with respect to x- or y-principal direction of the build-
ing structure. Here we define the three mutually orthogonal princi-
pal directions of each building structure as follows: z-direction as
the direction perpendicular to the ground (i.e., (0, 0, 1)); x- and y-
principal directions as primary directions of the two largest clusters
of planar orientations. For LiDAR data acquired by ground-base
devices, x-principal direction is chosen to be the orientation of the
front wall which can be determined by the driving path of the scan-
ner. For LiDAR data captured from air, x-principal direction is
chosen to be the direction of the largest cluster of planar orientation
(except for z-direction).

According to the preceding requirement, two types of block sym-
metry are defined:

(1) parallel-symmetry: planes Pi = 〈ni, pi, Bi〉 and Pj =
〈nj , pj , Bj〉 are parallel-symmetric if ni · nj = ±1 and the
projection of each planar on the other overlaps the other pla-
nar.

(2) intersecting-symmetry: planes Pi = 〈ni, pi, Bi〉 and Pj =
〈nj , pj , Bj〉 are intersecting-symmetric if the following con-
ditions are satisfied: (1) |ni ·nj | < 1; (2) define nl = ni×nj ,
then either x ·nl = 0, or y ·nl = 0, where x and y are the two
principal directions; (3) the projections of both planes onto
the plane determined by vectors nl and z = (0, 0, 1) overlap.

To ensure the symmetry of basic blocks, we further require that for
each pair of patches 〈{Roof1,Wall1}, {Roof2,Wall2}〉, Roof1
and Roof2 be intersecting-symmetric, and Wall1 and Wall2 be
parallel-symmetric.

Figure 4: Planar primitives extracted by RANSAC. (left) Input la-
beled point cloud (red as walls; blue as roofs); (right) plane extrac-
tion result, colorized planes represent different planar primitives.
The grey points are labeled as outliers.

Block-Level Convexity Constraint Our modeling algorithm re-
quires convexity constraint of basic blocks. Specifically, We require
that all basic blocks of the building structure be sub-convex. Let K
be a subset of R3 that is the union of a finite number of planar prim-
itives. For example,K can be a basic block. K is sub-convex if it is
a simply-connected subset of the boundary of a simply-connected
convex subset of R3. Here the concept of being convex is standard,
namely, a subset G of R3 is convex if for all u, v ∈ G, the line
segment uv ⊂ G. Intuitively, a basic block is sub-convex if its pro-
jection onto a carefully chosen plane can have the shape of letter
“U”, but not “Z”.

5.3 Construction of the Connection Graph

In order to generate a plausible decomposition, a global connec-
tion graph C (undirected, weighted) is constructed from all planar
primitives. The algorithm optimizes the decomposition result by
maximizing the connection score that is defined on the connection
graph C as the weights of its edges.

Specifically, each vertex in C represents a planar primitive in the
building structure and is tagged by a semantic label chosen from
eight possible choices: ground, wall, roof, column, garage door,
chimney, eave and unknown. The primitives are initially labeled
based on the point cloud segmentation result discussed in Sec-
tion 4.2: during the pre-reconstruction stage each planar primitive
is initially labeled as one of ground, column, roof, and wall accord-
ing to the class of its majority points, or unknown if the classes
of its points are too diversified. After the house is reconstructed,
the garage door, chimney and eave primitives will be detected and
labeled as described in Section 5.5.

An edge between two vertices indicates that the two primitives rep-
resented by those vertices are spatially connected. Specifically,
for two parallel primitives, the vertices representing them are con-
nected by an edge if (1) they are co-planar and (2) the shortest dis-
tance between the two planar point sets is less than a predefined
threshold (set to 0.5m for our experiments); for two non-parallel
primitives, the vertices representing them are connected by an edge
if the shortest distances of the two planar point sets to the inter-
section line are both less than a threshold (set to 0.75m for our
experiments).

For each edge euv connecting vertices u, v, its connection score, or
weight, Wuv , is calculated as

Wuv := Ψ (Duv) + (−∞)χB(u, v)

where Ψ is a predefined monotone decreasing step function, Duv

is the spatial distance between the primitives represented by u, v,
and χB is an indicator function whose value is 1 iff u, v satisfy
backward relation, where two roof primitives form a “V” shape, so
they do not fit in a basic block and thus are forbidden from being in
the same block even if they satisfy the convexity constraint.
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The connection graphC constructed according to the preceding de-
scription serves as the basic data structure for the progressive de-
composition and reconstruction algorithms, which aim at finding
the plausible cut of the connection graph so that the sum of the con-
nection scores on vertices inside each block is locally maximized.

5.4 Algorithm: Progressive Decomposition and Re-
construction

A hierarchical tree (Figure 3) is generated based on the connection
graph C, which is described in Section 5.3:

(1) its root as the building structure,
(2) its first level nodes as the basic blocks,
(3) its second level nodes as the pairs of patches,
(4) its third level nodes (leaves) as primitives with semantic tags.

This data structure is obtained in a progressive (iterative) manner,
where for each iteration we first decompose the building structure
using the greedy grouping method and then reconstruct and ab-
stract the parameterized block models (Algorithm 1). For each step,
the hierarchical tree is updated with new blocks and eventually it
reaches a plausible state. The algorithm works with the decompo-
sition and reconstruction procedures as two subroutines which will
be elaborated more in the next two paragraphs. In particular, our
algorithm can also effectively handle incomplete data during the
reconstruction procedure. Figure 5 illustrates one iteration of the
algorithm while handling missing data. Figure 6 shows the final
result by the progressive decomposition and reconstruction algo-
rithm.

Algorithm 1 Hierarchical Tree Generation
Input: a set of primitives PS :=

⋃
i{Pi}

Output: a hierarchical tree T
1: while PS 6= ∅ do
2: P0 ←largest primitive in PS
3: G← {P0}
4: Decomposition: Update G using a greedy grouping algo-

rithm
5: Reconstruction: Update hierarchical tree T from G
6: for Pj ∈ G do
7: Remove Pj from PS
8: end for
9: end while

Figure 5: .Greedy grouping and reconstruction with missing data
handling. From left to right: (a) grouped primitives, (b) recon-
structed mesh model, (c) extend by handling missing data and (d)
final block model.

Decomposition In order to find a plausible decomposition of the
building, a greedy grouping method is used, which aims at finding
the largest set of the planar primitives that are potentially part of the
same basic block:

(1) start from a planar P0 (roof planar or front wall planar), ini-
tialize group G = {P0};

Figure 6: Decomposition and Reconstruction result of an incom-
plete scan. (left) Decomposition of the building structure; (right)
reconstruction result. Each color represents an individual block.

(2) create a candidate set as the set of all planar primitives that
connect to any planar element in G; If the candidate set is
empty or all primitives in such set are already grouped in a
block, then terminate the decomposition loop and start the re-
construction procedure.

(3) remove all primitives that do not satisfy the symmetry and
convexity constraints;

(4) sort the remaining primitives with respect to their connection
scores, and group the one with the highest connecting score
into G; exit if there is no remaining primitives;

(5) goto step (2).

Reconstruction After a group of primitives is found using the
preceding decomposition algorithm,

(1) the roof-wall patches are extracted and parameterized to form
the block representation;

(2) a surface mesh is generated as the block model;
(3) such parameters are then adjusted by maximizing the number

of points that “fit” into the block model, where a point is said
to “fit” into a block model if its shortest distance to the surface
of the block model is less than a threshold (set to 0.15m for
our experiments);

(4) if one or several patches are missing from grouped primitives,
the algorithm first fulfills the missing roof or wall with a vir-
tual primitive, and then “extend” the block model to handle
the incomplete data (which will be elaborated in the next para-
graph);

(5) then new planar primitives are formed from the unfit points;

When block reconstruction is finished, we proceed to the next itera-
tion with a new greedy grouping process of decomposition until no
basic blocks can be reconstructed from remaining primitives.

Incomplete Data Handling Due to the limit of acquisition de-
vices and building occlusions, the acquired LiDAR data is usually
incomplete. Based on the assumption that the building structure is
watertight and symmetric, our algorithm handles such incomplete
or missing data during the reconstruction procedure in the follow-
ing way:

(1) for aerial data, where the structures under roof are difficult
to capture, our algorithm handles the missing walls by auto-
matically fulfilling the Roof-Wall patches with aligned virtual
walls;

(2) for terrestrial data, the side/back walls and roofs are likely
to be missing; if the reconstruction algorithm detects such
missing, it extends the block model by (a) generating a virtual
primitive with respect to the symmetry constraint, (b) pushing
it out along its normal direction until an actual planar prim-
itive overlaps it, and (c) updating the block model if such a
planar primitive is found, or keeping it as a node in the hier-
archical tree otherwise. Figure 5 shows an example.
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5.5 Refinement of Primitive Labels and Model

After the building structure is decomposed and reconstructed, the
algorithm traverses all the primitives and detects garage doors,
chimneys, and eaves based on the spatial relation between the can-
didate primitive and its neighbors within the same reconstructed
block. Once one of the preceding three types has been detected the
model will also be refined accordingly. See below for details.

(1) Eave primitive: a wall or unknown primitive is detected as an
eave if (a) it is vertically thin (less than 0.3m in our exper-
iments) and (b) adjacently beneath a roof; for each detected
eave its corresponding roof primitive is stretched down verti-
cally by the same size of the eave so that a solid roof is formed.

(2) Garage Door: a pair of walls is labeled as a garage-door prim-
itive if (a) these two walls are parallel-symmetric and their
representing vertices are connected in the connection graph C
and (b) the point cloud of one of walls forms a “

∏
” shape

whose hollow overlaps the projection of the other wall onto
this wall; for each detected such pair a solid garage door is
formed by creating a box with these two walls as its front and
back and removing the underneath hollow which corresponds
to the region on the front wall that occupies little point cloud.

(3) Chimney Extraction: a wall is detected as chimney if (a) the
block it belongs to is a box structure and (b) its highest po-
sition on z-direction is higher than that of the entire building
structure minus 1m; for each detected chimney primitive, it is
lowest bound on z-direction will be set to the ground level.

6 Model Enhancement

We also present several techniques to enhance the visual realism of
final models, including an effective texture snapping algorithm that
reduces artifacts caused by inaccuracy in 3D/2D registration, au-
tomatic billboard tree/shrub reconstruction suitable for large-scale
light-weight modeling of plants, and object replacement using mod-
els available on the Internet. All of these combined lead to rich and
clean final models beyond just buildings. We briefly summarize
in the followings, and more technical details can be found in the
supplementary material.

6.1 Texture Mapping

To compute texture maps for a reconstructed building model, we
first automatically find the nearby camera views that capture the
model, and then back-project the views to the planar surfaces of
the model. However, images and point clouds may not be perfectly
aligned, and a model is only approximately reconstructed. Thus,
texture maps generated from the direct back projection would pro-
duce noticeable misalignment. In order to alleviate these errors, we
propose an algorithm of content-preserving warps inspired by [Liu
et al. 2009] based on 2D-3D line correspondences. We further fuse
the multiple overlapping views using a multi-label MRF energy
minimization framework similar to [Sinha et al. 2008].

6.2 Landscape Modeling

Plants, including trees and shrubberies, are integral parts of our liv-
ing environment. We develop a fully automatic method suitable for
large-scale reconstruction by using the light-weight billboard rep-
resentation for visually-plausible plant models. Our plant model
consists of two orthogonal planes and one billboard image. Other
frequently occurring static objects in residential landscape such as
mailboxes and street lights are often hard to directly reconstruct
using simplified geometric models from the cluttered, incomplete

and noisy data. Inspired by the recent success of model replace-
ment applied to indoor scene modeling (e.g., [Shao et al. 2012]),
we download the similar models from Google 3D Warehouse, and
use PCA to estimate global scaling and an initial pose between the
models, and the recognized raw points and further align them using
iterative closest point (ICP). In this way, points from a categorized
object (e.g., a mailbox) are replaced by the corresponding model.

7 Experimental Results

We have implemented our algorithms and mainly tested on ground-
based LiDAR scans. Our ground-based LiDAR data are acquired
by a mobile LiDAR scanning unit and texture/color information
is captured with a high-resolution panoramic video camera. The
scanning trajectory is recorded with multi-channel GPS and high-
precision inertial measurement unit (IMU). The 2D and 3D data are
already registered (though the accuracy is not consistent) and geo-
referenced. Figure 7 shows two datasets from our scanning plat-
form. The top (Div-A) is a upscale residential area (containing over
150 million points) while the bottom (Div-B) is an average residen-
tial area (containing over 183 million points) that was newly built.

Figure 7: Ground-based LiDAR Datasets: (top) a high-end subdi-
vision (Div-A); (bottom) an average subdivision that is newly built
(Div-B).

7.1 Results on Semantic Segmentation

In order for training and evaluation, we have labeled both Div-A
and Div-B. We used Div-A for training and Div-B for evaluation.
One segmented scene is shown in Figure 1(a). The precision and
recall of automatic segmentation is shown in Table 1. Compared to
previous semantic segmentation methods (e.g., [Zhang et al. 2010]),
our accuracy is noticeably higher, partially due to our high-quality
input. We also report the precision (P) and recall (R) of the house
classes: walls (P = 94%,R = 98%), roofs (P = 94%,R = 81%)
and columns (P = 72%, R = 87%). It should be emphasized
that all of our subsequent modeling results use only semantic labels
from the classifier’s output, not the ground-truth. In addition, our
house modeling is not sensitive to mislabeling since it is highly
regularized by various constraints.

7.2 Reconstruction Results

We show modeling results on Div-A and Div-B datasets. Since the
symmetry and convexity of the basic blocks are the only assump-
tions we make, our algorithm is capable of modeling a variety of
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Table 1: Precision and recall of semantic segmentation.

predict predict
precision car ground house mailbox plant road sign streetlight waste bin recall car ground house mailbox plant road sign streetlight waste bin

re
al

car 0.68 0.00 0.00 0.00 0.00 0.01 0.01 0.10

re
al

car 0.70 0.00 0.04 0.00 0.24 0.00 0.00 0.02

ground 0.02 0.89 0.00 0.00 0.00 0.00 0.00 0.00 ground 0.02 0.85 0.08 0.00 0.05 0.00 0.00 0.00

house 0.02 0.01 0.88 0.00 0.09 0.00 0.00 0.00 house 0.00 0.00 0.83 0.00 0.17 0.00 0.00 0.00

mailbox 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.04 mailbox 0.01 0.01 0.01 0.85 0.10 0.00 0.00 0.02

plant 0.24 0.10 0.12 0.05 0.91 0.04 0.02 0.14 plant 0.00 0.00 0.06 0.00 0.94 0.00 0.00 0.00

road sign 0.00 0.00 0.00 0.00 0.00 0.91 0.05 0.01 road sign 0.04 0.00 0.11 0.00 0.12 0.57 0.09 0.07

streetlight 0.00 0.00 0.00 0.03 0.00 0.04 0.92 0.00 streetlight 0.00 0.00 0.01 0.06 0.50 0.01 0.42 0.00

waste bin 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.71 waste bin 0.17 0.00 0.00 0.01 0.02 0.00 0.00 0.80

Figure 8: Results on ground-based LiDAR datasets. Each row shows the result of one house. 1st and 2nd columns: point clouds color
coding based on height in two perspectives, 3rd and 5th columns: reconstructed models, and 4th and 6th columns: reconstructed models with
textures.

Figure 9: Qualitative evaluation on three building reconstruction algorithms. Four groups of comparison results are shown. In each group,
from left to right: point clouds, results by Piecewise Planar Reconstruction, results by 2.5D Dual Contouring, and results by our approach.

houses and dealing with significant missing data. As shown in Fig-
ure 8 (1st, 2nd and 3rd rows), Figure 9 (1st rows) and Figure 11,
we correctly model the houses composed of several gables and box
structures at different scales, location and nested structures, and
with missing point scan at various levels.

All houses in Div-B are automatically reconstructed together with
other categorized and modeled objects such as trees and mailboxes
in the landscape can be seen in the accompanying video. Fig-
ure 1(d) shows the overview of the large-scale reconstruction re-
sults overlaid on the geo-registered satellite image.

More complex structures and complicated composition of building
blocks are often found in Div-A. As shown in Figure 8 (4th row) and
Figure 9 (2nd row), the houses consist of multiple gables, hipped
structures and even octagonal shapes. Our algorithm can success-
fully identify and reconstruct those blocks in a complex configura-
tion from severe missing data. For example one tilted roof of the
hipped structure is completely missing in Figure 9 (2nd row), but
benefited from the symmetric block constraint, we can still recon-
struct the complete structure from the partial scan. Figure 10 shows
an overall view of the reconstructed Div-A dataset without textures.
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Figure 10: An overall view of reconstructed houses in Div-A.

7.3 Comparisons
We have compared our house reconstruction approach with two au-
tomatic state-of-the-art algorithms: Piecewise Planar Surface Re-
construction (PPSR) [Chauve et al. 2010] and 2.5D Dual Contour-
ing (2.5D DC) [Zhou and Neumann 2010]. We have implemented
the PPSR algorithm ourselves and use Zhou and Neumann’s pro-
vided implementation of 2.5D DC to perform the evaluation. Fig-
ure 9 shows the qualitative evaluation on four houses varying at
surface complexity and scan completeness. The 2.5D DC method,
which successfully works on airborne LiDAR data, can only recon-
struct rough geometric shapes but lacks ground-level details when
data are more or less complete, especially at roofs. However, it
creates holes when the roof scan is incomplete. The PPSR method
is a general surface reconstruction method, which only regularizes
the input assuming piece-wise smoothness. Therefore, it can re-
construct more surface details, but cannot well handle missing data
or low-density scan well. Our algorithm is high-regularized and
therefore robust to both cases. The comparison results in a full
360◦ view can be seen in the accompanying video. For quantitative
evaluation, we use the point to surface distance as the error met-
ric and visualize in Figure 11. The overall reconstruction error is
0.0290 ± 0.0865 meters (PPSR), 0.3591 ± 0.2972 meters (2.5D
DC) and 0.0598±0.1174 meters (Ours). Thus, our method can not
only get quantitatively small fitting error but also achieve the most
visual realism of reconstruction results.

Our house modeling method can also be applied to airborne LiDAR
data. We manually cut two buildings from the Wright-State-100 1

airborne LiDAR scans. Our learned classifiers on roofs and walls
can still generate good results on the cut-out building data. The
airborne LiDAR data often lack details under roofs or even the en-
tire walls, however our method is still capable of reconstructing the

1http://voyager.makai.com/Workspace web.php

Figure 11: Quantitative evaluation on three building reconstruc-
tion algorithms. From left to right, results by Piecewise Planar Re-
construction, results by 2.5D Dual Contouring and results by our
method. Top: point clouds color-coding based on point to surface
distance. Bottom: the corresponding reconstruction results.

Figure 12: Results using the Wright-State-100 airborne dataset.
From left to right: point cloud, reconstructed models by our
method, and the color-coded model showing the identified and re-
constructed block structures of our method.

complete models as shown in Figure 12. We are aware that a recent
method that uses global regularities [Zhou and Neumann 2012] can
probably generate similar results in this data set where the roof is
completely scanned. But that method, unlike ours, is designed to
work with only aerial scans.

7.4 Timing Performance

Our semantic segmentation algorithm takes about 40 minutes for
labeling Div-B including feature extraction, classification and seg-
mentation. This residential subdivision includes 53 houses.

Our geometry processing pipeline is very efficient. An average
house in the subdivision datasets contains between 350K to 600K
points. The processing time is around 15 to 22 seconds, in which
RANSAC plane fitting takes half of the time. For the Wright-State-
100 dataset that contains larger buildings with over 2 million points
per building, the run time increases to 70 seconds per house. It
should be noted that these timing numbers are based on unopti-
mized Matlab implementation running on a Intel i7 processor with
4GB of RAM. Compared to the PPSR algorithm that takes about
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15-20 minutes per house, our average per-house reconstruction time
is about two minutes (including semantic segmentation), almost
one order faster. We attribute this to a highly regularized model-
ing scheme. Since it takes at least a few seconds to scan a building,
we are optimistic that real-time and online reconstruction could be
reached with optimized code.

8 Limitations

Our house modeling scheme has a few limitations, causing artifacts
in the final model, which are shown in Figure 13. The left column
shows the limitation of the block-level symmetry assumption. The
main body of this house is in fact not symmetric; the back half is
shorter than the front half. Since the backside of the house is com-
pletely missing from the scan, our grouping algorithm considers the
shorter sidewall as missing data, resulting a symmetric house body
which is incorrect. The second column shows the effect of severe
occlusion. The concave area is not scanned at all, resulting in two
separate houses instead of one. We can find these errors only by
cross-examining the reconstructed model and the images. There-
fore, exploiting the image information early on in the reconstruction
process is a very promising direction. The last one shows the miss-
ing of columns. These columns are fairly flat, with vegetation in
between. They are misclassified as walls, leading to mis-detection
of column primitives and inaccurate reconstruction.

Figure 13: Three failure cases due to erroneous symmetry assump-
tion (left), severe occlusion (middle), and missed column extraction
(right).

Providing high-quality textures to the model turned out to be a very
challenging problem. Many large scale reconstruction methods do
not deal with textures at all. In the Div-B dataset, the registration
between the color image and the 3D point cloud is not very accu-
rate. Sometimes the error can be as big as 20 pixels. Our line-based
warping algorithm cannot handle large offset without introducing
distortions in the final texture. In addition, there are plenty of places
that are not captured by camera. These areas now show up as gray
color. These texture artifacts can be seen in the video. The problem
of occlusion is even more severe in Div-A which has taller houses,
much denser vegetation and flourishing trees since it is an old and
more up-scale subdivision. We believe texture synthesis could pro-
vide better texturing results.

9 Conclusion

In this paper we present a complete system for residential scene
modeling from 3D point cloud captured by mobile scanners. By
first recognizing individual objects, we develop and apply category-
specific reconstruction methods to obtain visually pleasing polyg-
onal models in the presence of occlusions and incomplete data. A
novel house modeling method is developed. The key idea is to de-
compose potentially complicated structures into basic blocks, in-

cluding walls, roofs, columns, etc. An analysis-and-reconstruction
scheme is developed to find a plausible configuration of basic
blocks that best fits both the input data and typical house topology.
Our system requires very little human intervention and therefore is
suitable for large-scale modeling.

Looking into the future, in addition to addressing the limitations
discussed, we believe that there are many exciting opportunities
for further exploration. For example, we should be able to use the
semantic labels inherent in our model to support editing and re-
targeting. In terms of modeling quality, some fine details on the
house, such as hand-rails and staircases, are not reconstructed in
our current approach. These details are only represented with a few
sparse points. They are however visible in the images. We plan to
improve our segmentation algorithm by using both depth and color
so that these details can be recognized and replaced. In addition,
we plan to automatically cluster points in the same category to find
different objects. Overall, the combination of pattern recognition
algorithms with geometry processing is expected to lead to better
models that support not only high-fidelity visualization, but also
editing and eventually search.
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